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When anomalous scatterers are present the electron density function is complex, both for centro- 
symmetric and non-centrosymmetric crystals. By neglecting A f "  in the calculation of the phase angles, 
the electron density map shows satellite maxima weighted according to Af'" in positions defined by 
combinations of interatomic vectors, as in Ramachandran's fl general synthesis. On the other hand, 
when A f "  is accounted for, but the experimental data are not collected according to the point group 
symmetry, the electron density distribution calculated by the usual formulae shows maxima which are 
seriously affected both in position and shape. The errors are of the same type as those found in the 
least-squares refinement, when Af" is neglected. 

Introduction 

It is well known that the general expression for the 
X-ray atomic scattering factor,f, of an atom is complex 
(see, e.g., James, 1950): 

f= fo  + Af '  + iAf" =fr + iAf" (1) 

where f0 is calculated on the assumption that the 
electrons are 'free'; the terms Af'  and Af"  are functions 
of the binding energy of the electrons and of the energy 
of the incident X-rays. For wavelengths commonly 

u s e d  in X-ray structure analysis, the contributions of 
Af '  and Af"  are significant whenever 'heavy atoms' 
are present. In fact it was shown (Cruickshank & 
McDonald, 1967) that neglecting Af"  in the determina- 
tion of polar structures containing atoms heavier than 
oxygen (with CuKa  radiation), or sulphur (with 

Mo Ka), the accuracy of the coordinates cannot be 
better than 0.005 A, unless experimental data are col- 
lected in a proper way (Cruickshank & McDonald, 
1967). The error in coordinates may be unexpectedly 
high, e.g. 0.05 A for the z coordinate of the thorium 
atom in the structure of thorium nitrate pentahydrate 
(Ueki, Zalkin & Templeton, 1966). Furthermore, 
neglect of Af '  and Af"  generally affects the temper- 
ature parameters. 

On the other hand, both a better agreement obtained 
between lengths of chemically equal bonds (see, e.g. 
McDonald & Cruickshank, 1967; Ferraris, 1969), and 
a comparison of X-ray and neutron diffraction results 
(cf. Ueki, Zalkin & Templeton, 1966) show that more 
reliable results are achievable after applying the 
anomalous dispersion correction. For most of the cur- 
rent structure analyses, however, these corrections 
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are not applied and, when they are, the procedure used 
is often not reported. 

It must be noted that most of the anomalous scat- 
tering treatments in the literature deal with reciprocal 
space, taking this effect into account either in the cal- 
culation of structure factors or by correcting the experi- 
mental data in some way (least-squares stage). It 
seems therefore worth while to analyse the significance 
of the electron density function in the presence of 
anomalous scattering, its characteristics and validity, 
and which results are obtained in real space (electron 
density computation) when anomalous dispersion is 
accounted for in a complete, partial or in no way. 

Mathematical  relationships 

(a) Structure factor 
The general expression for the structure factor, 

derived from (1), is 

F(H) = F°(H) + F'(H) + F"(I-I) = Fr(H) + F"(H) 
= IFfH)I exp [i~(H)]=A(H)+ iB(H) 

where 

F°(H) = 

F'(}t) = 

(2) 

N 

~sf3 exp (2xiH. rj)= IF°(H)i exp [/s°(H)] 
1 

(3) 
N 

~,~ Afj exp (2r~iH. r~)= IF'(I-I)I exp [i~'(H)] 
1 

(4) 
N 

F " ( H ) =  i ~ j  Afj' exp (2zciH. rj) 
I 

- IF"(H)I  exp [ia"(H)] (5) 

A(ri) = 
N 

~ j f ~  cos (2nH. r j) 
1 

N 

~ j  Afj cos (22zH. rj) 
1 

N 

~j dfj' sin (2rcH. rj) 
1 

(6) 

N 

B(H)= ~ j f ~  sin (21rH. rj) 
1 

N 

+ ~s Afj sin (2z~H. rj) 
1 

N 

+ ~j  Afj' cos (21rH. r j ) .  
1 

(7) 

From these equations it follows (see also Fig. 1) that 

IFfI-i)l # IF(ITI)I; IF°(H)I--IF°(IZI)I; IF'(H)I--lF'(fi)l; 
IF"(H)I -- IF"(fi)]. (8) 

( H ) ~ O ( H )  # ~ '  (H)#~"(H);  
( r I ) # - ~  (fi); ~°(n) = _~0(f i ) ;  

a'(H) = - a ' ( f l ) ;  cd'(H) = ~z- ct"(fi). (9) 

For centrosymmetric structures and for any structures 
with all equal atoms, the relations (8) become identities. 
For centrosymmetric structures, (6), (7) and (9) can be 
rewritten 

N 

A(H)= ~jf .~ cos (2zcH. rj) (6') 
1 

N 

B(H)= ~,~ Afj' cos (2~zH. rj) (7') 
1 

~(H) # ~°(H)= ~'(rI) + m= = (¢'(H) - ~z/2) + n=; 
c~(n)=~(fi); c~°(H)=ct°(fi); ct'(H)=c((f-I); 
~"(n)= ~"(fi) (9') 

and 

where 
[fl = [(if)2 + (Af,,)211/2 (11) 

Then 

Aft' 
q~=tg -1 f r  (12) 

or, to a first approximation (Cruickshank & McDon- 
ald, 1967), 

Af" 
~0- f f  (12a) 

N 

F(H)= ~ j  IfjI exp [i(2gH. rj+~0j)] . (13) 
1 

(b) Electron density 
The linear property of Fourier transforms allows us 

to write 

•(r) = T -  I[F(H)] 
= T-'[FO(H)] + T-~[F'(H)] + T-  ~[F"(H)] 
= T-~[F(H)] + T -  a[F"(H)] 
= f ( r )  + Q'(r) + i~"(r) = 0r(r) + iQ"(r). (14) 

Since both T-I[F°(H)] and T-~[F'(I-I)] are real quan- 
tities, while T-~[F"(H)] is an imaginary one, 0(r) must 
be a complex function; this is true for every space 
group. Writing the three components of such a func- 
tion as Fourier series and taking into account the 
equalities (8) and (9), we obtain 

Q(r)= -i7 ri IF°(l-I)l cos [2nH. r -a°(H)]  

+ c o  

+ ~ .  IF'(H)I cos [2~H. r-~'(I-I)] 
0 

} - i  ~H [F"(tI)I sin [2rctI . r -e"(H)]  . (15) 
0 

where m and n are integers. 
It appears from the above considerations that the 

the structure factor is a complex quantity whenever the 
scattering is anomalous. In this respect it may be noted 
that a numerically easy way to account for Af' and 
Aft' is to write 

f = l f [  exp (i~0) (10) 
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The function 0(r) may therefore be calculated using 
'positive' It  coefficients only (i.e. coefficients having 
at least one of the three indices always non-negative) 
whenever the three components of the structure factor, 
F°(tt), F'(H) and F"(H), are known. 

On the contrary, in order to calculate 0(r) as a 
function of the F(H)'s, one must also use negative H's: 

1 +oo 
o(r)= -g  ~HIF(H)I exp [i~(H)] exp ( - 2 n i H .  r), (16) 

- - O 0  

that is, on the basis of (2), 

1{+0~ Q(r)= ~ H [A(H)+ A(~I)] cos (2nil .  r) 

} + ~ n  [B(H)-B(fi)] sin (2nil.  r) 
o 

+i { 
o 

~ [A (H) - A (H)] sin (2nil .  r ) t .  (17) 
o J 

With reference to (6) and (7) we have 

N 

A(H)+A([I)= 2 ~ j f }  cos(2nH.r j )  
1 

N 

A(H)-  A(~I)-- - 2  ~ j  Af)' sin (2nit.  rj) 
1 

N 

B(H)+B(~I)= 2 ~ jA f j ' co s (2nH. r j )  
1 

N 

B ( H ) - B ( f i ) =  2 ~ j f ~  sin (2nil .  r j ) .  (18) 
1 

It is evident from (18) that the real and imaginary parts 
of (17) correspond to 0r(r) and Q"(r) of (14), respective- 
ly. 

From (14) and from (3), (4) and (5) it may be con- 
cluded that each of the components Q°(r), Q'(r) and 
Q"(r), is the inverse Fourier transform of the same 
structure, which, in the three cases, contributes with 
scattering factors f~, Af'  s and Af'j'. The maxima of 
each of the 0(r) components are in the same rj positions 
and their weight and shape correspond to the Fourier 
transform off~, A f" s and A f's', respectively. 

An obvious consequence of the above considerations 
is that neither 0(r) nor 0r(r) represents the true electron 
density distribution in the crystal, their maxima being 
incorrectly weighted and shaped. 

Calculation of electron density from experimental data 

The experimental measurements give IFo(H)l values, 
corresponding to [F(H)I in (2), and not the components 
F°(H), F'(H) and F"(H). Therefore, one cannot, in 
general, calculate an electron density distribution cor- 
responding to 0°(r) of (14) directly from the experi- 
mental data. 

In order to obtain an unbiased representation of the 
electron density the [Fo(H)] values should be corrected 
to [Fo°(H)]. Some approximate methods were proposed 
(Templeton, 1955; Patterson, 1963; Ibers & Hamilton, 
1964) which employ calculated quantities, with an ac- 
curacy dependent on the stage of refinement and on the 
actual fo, Af'  and Af" values used. A rather simple 
method is to take the difference between Fo(H) and 
the calculated F'(H) and F"(H) vectors, by subtracting 
the terms which depend on Af'  and Af" in (6) and (7), 
from [Fo(H)[ cos ~(H) and ]Fo(H)[ sin ~(H), respectively. 
If [Fo(H)] values are collected according to the point 
group symmetry of the crystal, only the Af' terms must 
be subtracted, on account of (17) and (18). For centro- 
symmetric space groups the coefficients ]Fo(H)[ cos e(H) 
are used after the Af' term of (6) has been subtracted 
from them. 

In each of the reported methods, corrections must 
be re-calculated at every stage of the refinement and, 
for non-centrosymmetric space groups, after the abso- 
lute configuration has been established. In most cases, 
however, experimental data are not corrected for 
anomalous dispersion by the above methods, even if 
this phenomenon is accounted for in the structure 
factor calculation. We wish, therefore, to examine 
which errors arise in the electron density depending 
on the procedure followed in processing the experi- 
mental data, i.e. whether (i) all or (ii) some of the 
reflexions in the limiting sphere are taken into account 
and whether (iii) the phases ~.(H) or (iv) e°(H) are used, 
both for centrosymmetric and non-centrosymmetric 
structures. 

Use of [Fo (I-I)[ and a (H) 

Let us suppose that only the [Fo(H)[ values of one 
hemisphere (H positive) are available (P1 case), the 

BCH) 

o~) 

a"(n) 

A® 

Fig. 1. Vector diagram representing equations (2) to (7). 
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true absolute configuration having been established. 
With the usual formulae, one may calculate the 
electron density real function derived from (16): 

2 +~o 
0~(r)= --~ o~i~ IFo(H)[ cos [27tH. r-ct(H)].  (19) 

This function does not correctly represent the actual 
electron density, as far as the position and shape of 
the maxima are concerned. It differs from the real part 
in (14) or (15), namely from Q'(r), by 

2 +0o 
02(r)-Qr(r) = -~- ~ a  IFo(H)l cos [2rcH. r-c~(H)] 

V H IF°(H)[ cos [2zcH. r-c~°(H)] 

} + ~ n  IF'(H)I cos [2zcH. r -~ ' (H)]  
0 

2 + ~ ° {  
= ~o H [ao(H)-A°(It)-A'(H)]cos(2rcH.r) 

+ [Bo(H)-B°(H) - B'(H)] sin (2rcH. r) } 

V2+°?'{ = 0~ H A"(H) cos (2~H. r) 

+ B"(H) sin (2~H. r) t '  (20) 
# 

that is, 
2 +~o 

O°~(r)-Q'(r)= V ~H IF"(H)I cos [2~zIt. r - e " ( H ) ] .  
U 

(21) 
Equation (21) shows that Oo~(r) is equal to 0r(r), which 
has maxima in the rj positions, plus a function that 
does not represent an electron density distribution of 
atoms in the rj positions, as shown by comparison 
with (15). Its maxima, with weights still depending on 
the Af" values, are in positions different from U and 
their addition to the maxima of the 0r(r) function 
results in a shift of the atomic positions of the anomal- 
ous scatterers in the 0o~(r) map, as indicated below. 

We may conclude that the function calculated using 
IFo(H)[ values with H positive and e(H) phases is in- 
correct as regards both the shape and position of the 
maxima. 

This is also true for centrosymmetric structures, if 
(19) is used, inasmuch as it corresponds to the real 
part of (17) after assuming A(H)=A(t-I) and B(H)= 
-B(H),  instead of B(H)=B(H). The correct real 
function to be calculated in the centrosymmetric case is 

2 +~o 
0o~(r) = --~ 0~ n Ao(H) cos (2rcH. r) .  (22) 

Obviously, when both positive and negative H's are 
available for summation (21), it turns out to be zero 
on the basis of (8) and (9), and therefore Oo~(r)= 0r(r) 
both in the centrosymmetric and non-centrosymmetric 
cases. 

As far as the extent of the previously described errors 
is concerned, it may be approximately estimated as 
follows. 

By using the geometric phase ~ '  (H) of the anomalous 
scatterers, 

~z (23) -2' 
summation (21) becomes 

(21') is a Fourier summation relative to the anomalous 
scatterers in which the phase of each term is shifted by 
n/2. It corresponds to X-rays being diffracted by crystal- 
lographic planes, each shifted by a quarter of a period 
in the direction of its scattering vector. This cor- 
responds to the statement that, for any given reflexion, 
it is as if all the atoms were shifted in the direction of 
the H vector by a quantity Ar, such that 

H. Ar= ¼. (24) 
This means that the function which is added to Q'(r) to 
give the experimental QoX(r), has its maxima weighted 
by Af" and all shifted from the r~ positions by the same 
average vector (Ar), wh oh results from the contribu- 
tion of all the reflexions. Since H and Ar are function- 
ally independent, by averaging over all the reflexions 
(24) becomes 

(H. Ar>= (H>. (Ar) = ¼. (25) 
For (H)  (or <Ar)) we have 

lo Hd V 
(H)  . . . . . . . . . . . .  . (26) 

l o dV 

When H is limited to a hemisphere, it is easy to see 
that <H) is a vector parallel to c, with modulus 
~-Smax, where S =  2 sin 0/2. 

Therefore one obtains from (25) 

2 
(zJZ)-  3Smax " (27) 

Equation (27) represents the shift (in A) of all the atoms 
in (21). In other words, only the (Ar> component along 
the direction of the vector {H> is effective in (21). 
Obviously, (H> and hence (Ar> are zero when the 
reflexions in the whole sphere are used. 

The actual shift AZ~ of each atom in the Qo~(r) map 
will result from the centre of gravity of the two con- 
tributing maxima, i.e., that of 0r(r) in rj and that of (21) 
in r j+(AZ>, weighted according to their relative 
weights f '  and Af"" 

AZj= (AZ) A,f_~'~_,.,, (28) 
f ± a 2  " 

Finally, we note that the shift given by (27) and (28) 
is about the same as the systematic error in the Z 
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coordinate estimated, to a first-order approximation, 
by Cruickshank & McDonald (1967) in the case of 
least-squares refinement. The same kind of considera- 
tions reported by these authors on the vanishing of the 
coordinate errors when the reflexions are collected ac- 
cording to a tetrahedral arrangement of the spherical 
octants, also applies to the present case. 

Use of IFo (H)I and ao (H) 

If we carry out an electron density computation using, 
in a relation like (19), phases c~°(H)[or c~'(H)] and 
IFo(H)I it may be deduced, on the basis of Ramachan- 
dran's fl synthesis (Ramachandran, 1964), that the map 
will show maxima in the correct rj positions but they 
are incorrect in shape and weight. Further, there are 
also satellite maxima, whose weights depend on the 
Aft '  values, in positions defined by combinations of 
interatomic vectors. 

To a first order approximation we can write 

IFo(H)l exp [ic~°(H)]= ]F0(H)I" IF°(H)~I exp [ia°(H)] 
IF°(H)I 

~ IF°(H)I2 exp [i~°(a)]. (29) 
-IF0(H)I 

If we assume that there are P and Q atoms in the unit 
cell hav ing f  ° (orf f )  and Aft '  scattering factors respec- 

tively (the Q atoms being in the same positions as the 
P atoms), the analogy with the fl synthesis is evident by 
putting, according to the notation of Ramachandran, 

Fo(H) ~ FN and F°(H)--+ Fv (30) 

where N =  P + Q. 
Consequently, it must be noted that the same atoms, 

with the same Aft '  values, when packed in different 
structures, give rise to different spurious peaks and 
errors. Furthermore, there is, at present, no direct 
comparison between the magnitudes of these errors 
and of those described in the IFo(H)I and a(H) case. 

References 
CRUICKSHANK, D. W. J. & MCDONALD, W. S. (1967). 

Acta Cryst. 23, 9. 
FEm~u~as, G. (1969). Acta Cryst. B25, 1544. 
IBERS, J. A. & HAMILTON, W. C. (1964). Acta Cryst. 17, 
781. 
JAMES, R. W. (1950). The Optical Principles of the Diffrac- 

tion of X-rays, p. 138. London: Bell. 
McDONALD, W. S. & CRtJXCKS~NK, D. W. J. (1967). Acta 

Cryst. 22, 48. 
PAttERSON, A. L. (1963). Acta Cryst. 16, 1255. 
R~_AC~NDRAN, G. N. (1964). Advanced Methods of 

Crystallography, p. 25. London: Academic Press. 
TEMPLETON, D. H. (1955). Acta Cryst. 8, 842. 
UErd, T., ZAL~aN, A. & TEMVLm'ON, D. H. (1966). Acta 

Cryst. 20, 836. 

Acta Cryst. (1972). A28, 69 

Absolute Measurement of Structure Factors of Si 
by Using X-ray Pendelliisnng and lnterferometry Fringes 

BY S. TANEMURA AND N. KATO 

Department of Applied Physics, Nagoya University, Nagoya, Japan 

(Received 19 March 1971) 

The absolute values of crystal structure factors IFal of silicon were determined accurately for five low- 
order lattice planes, with probable errors of less than 0.05 %. The principle of the measurement is to take 
the ratio of IFgl and IF01, which are geometrically proportional to the spacings of the Pendell6sung and 
interferometric fringes respectively. Thus, this method is not only based on a principle appropriate for 
a truly absolute measurement, but the difficulty in determining the proportional factors is essentially 
eliminated, and the experimental errors can be reduced to about 0.1%. Some geometrical corrections, 
however, are required to attain an accuracy better than this. These corrections as well as the theoretical 
ones are discussed and the necessity of taking into account the effect of the nuclear Thomson scattering 
is pointed out. The consistency of the results was checked with respect to the following points; (i) I Fgl -- IF-g I, 
(ii) led values being independent of whether the interference fringes in the direct beam or those in the 
Bragg-reflected beam are used, and (iii) the agreement of IFgl for different specimens. The atomic 
scattering factors Ifgl standardized at 20°C are as follows; 111 : 10"660,220: 8"460, 333 : 5"839, 440:  5"404, 
and 444:4"168. A comparison is made with the values of other authors. 

1. Introduction 

One of the important topics in crystallography is the 
determination of accurate values of structure factors on 
an absolute scale. The methods can be classified in two 

categories; (i) the methods based on the kinematical 
theory and (ii) those based on the dynamical theory of 
crystal diffraction. Obviously, the former is universal 
but cannot be very accurate, while the latter holds the 
possibility of obtaining very accurate values for limited 


